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The synthesis of (-)-aphanorphine was achieved by using BusSnH-mediated aryl radical cyclization of 1-benzyloxycarbonyl-2-(2-bromo-4-
methoxyphenylmethyl)-2-methoxycarbonyl-4-(phenylthiomethylene)pyrrolidine, leading to exclusive formation of the 6-exo cyclization product.

(—)-Aphanorphine (1) is an alkaloid isolated from the describe here the total synthesisldfased on this method-
freshwater blue-green alggphanizomenon flos-aqua®ne ology for construction of the quaternary carbonlof

of the structural characteristics of the alkaloid is its posses-  The key transformation of our synthetic planningloi
sion of a quaternary carbon at the benzylic positidNe  g.exoaryl radical cyclization 0B generated front, leading

recently reported sulfur-directegio-selective aryl radical {4 tricyclic compoundA, which possesses structural char-
cyclization onto methylenecycloalkanes, which provides an gcteristics ofl (Scheme 2).

excellent method for the construction of benzylic quaternary
centers. For example, while treatment @a with BusSnH

in the presence of AIBN causes aryl radical cyclization to _
give 6-endoproduct 3, reaction of2b leads to exclusive Scheme 2
formation of 5-exocyclization product4 (Scheme 1). We
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To examine this aryl radical cyclization, model radical
Hy, precursorlOa was prepared from commercially available
trans-4-hydroxy+-proline ) (Scheme 3). Thus, acid-

10.1021/0l015818) CCC: $20.00 ~ © 2001 American Chemical Society
Published on Web 07/07/2001



Scheme 3
COzH COgMe
“Chz
5 6
COzMe Br COzMe Br
18501+ ( | ¢ nod ] d
| N\ | N\
Cbz R Cbz R

7a: R=H, 96%, 4:1
7b: R = OMe, 91%, 4:1

8a: R=H, 94%, 4:1
8b: R = OMe, 68% from 7b
single isomer

CO,Me Br COyMe Br
o : . _ :
N, — " PhS N,

Cbz R Chz R
9a:R=H, 97% 10a: R =H, 73%
9b: R =OMe, 97% 10b: R = OMe, 80%

CO;Me Br ?
w2 Br
f B Q/l”'.
9 — B
N, N
Cbz Chz
11: 28% 12

aKey: (a) see, ref 4; (b) LHMDS, 2-bromobenzyl bromide, THF
for 7a; LHMDS, 2-bromo-4-methoxybenzyl bromide, THF fd;
(c) TBAF, THF; (d) PCC, CHCly; (e) PhSCHP(O)Ph, BulLi,
CeCh, THF, then NaH, THF; (f) Tebbe reagent, THF.

catalyzed esterification @, protection of the amino group
with benzyl chloroformate, and silylation of the hydroxyl
group provided fully protected amino ac&t* The lithium
enolate of6é was alkylated with 2-bromobenzyl bromide to
give a 4:1 inseparable mixture @a and its diastereomer in
96% yield>® Treatment of the mixture with TBAF followed
by oxidation of the resulting alcoh@a afforded keton®a

in 97% yield. HornerWittig reaction of9a with the lithium
salt of PhSCHP(O)PR’ in the presence of Cegfollowed

by treatment of the adduct with NaH afforded radical
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precursorlOain 73% yield® To investigate the effect of the
phenylthio group in the radical cyclization, radical precursor
11 having no substituent at the olefin terminus was also
prepared fron®a by employing Tebbe reagéraven in low
yield.?°

The crucial radical cyclization was next examined (Scheme
4). On treatment oflOa with BusSnH in the presence of

Scheme 4
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aKey: (a) BuSnH, AIBN, benzene, refluxl3a, 71%:;14, 20%;
15, 17%.

AIBN in boiling benzene, aryl radical cyclization proceeded
smoothly, leading to exclusive formation oe&ocyclization
productl3ain 71% vyield. In contrast, treatment @fl with
BusSnH under similar conditions gave &0 cyclization
product14 and olefin15 in 20% and 17% yields, respec-
tively. Olefin 15 might result from a 1,5-hydrogen shift of
intermediary radicaD. These results clearly show that the
phenylthio group oflOa is essential for efficient &xo
cyclization, probably as a result of its radical-stabilization
ability in radical E.

With these results of model experiments in hand, we turned
our attention to the total synthesis of }-aphanorphine (1).
Alkylation of the lithium enolate of6 with 2-bromo-4-
methoxybenzyl bromidé gave a 4:1 mixture ofb and its
diastereomer in 91% yield. After desilylation, recrystalliza-
tion from n-hexane—ED afforded alcoho8b in diastereo-
merically pure form in 68% yield. AlcohdBb was led to
radical precursodOb by the same procedure as that used

(8) Without CeC}, the reaction gave only a trace amouni.6§ probably
as a result of facile enolization of ketosa.
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Vol. 1, p 743.
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for 10a (Scheme 3). Treatment dfob with BusSnH and
AIBN in boiling benzene also caused clearexo radical
cyclization to afford the desired tricyclic compout@b in
76% yield (Scheme 5). Alkaline hydrolysis of the ester group
of 13b gave carboxylic acidl6 in quantitative yield.
Condensation ofl6 with 2-mercaptopyridineN-oxide fol-
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aKey: (a) BuSnH, AIBN, benzene, reflux, 76%; (b) 5 N NaOH,
MeOH, reflux, quant.; (c) 2-mercaptopyridind-oxide, EDC,
DMAP, benzene, rt, then B8nH, AIBN, reflux, 52%; (d) Raney
Ni (W-2), MeOH, reflux, 65%; (e) ref 1c,j.
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lowed by treatment of the resulting thiohydroxamate ester
17 with BusSnH in the presence of AIBN induced Barton
decarboxylatiort? affording 18 in 52% vyield. Heatingl8
with Raney nickel in methanol caused simultaneously
desulfurization, deprotection of the benzyloxycarbonyl group,
and reductive methylatidhof the resulting secondary amine
19 to furnish knownO-methyl aphanorphine (20) in 65%
yield, [a]?% +9.4 (c0.30, CHCY}) {lit.¢ [a]?®> +8.46 (c
0.35, CHC}), lit.4 [0]%'p +10.4 (c1.24, CHC})}. Finally,
synthesis of (—)-aphanorphine (1) was accomplished by
demethylation using BB£ mp 200-210°C (lit.**mp 215-
222°C, lit.Y mp 223-228°C), [0]?°% —23.6 € 0.20, MeOH)
{lit. Y [] %% —24.0 (c0.33, MeOH)}.

In conclusion, we have successfully applied sulfur-
directed aryl radical cyclization to the total synthesis of
(—)-aphanorphine ). This synthesis clearly demonstrates
the value of this cyclization for the construction of a benzylic
guaternary center in a considerably complex molecule.
Further applications of this cyclization are currently under
investigation.
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